

800V N-Channel Power MOSFET

TO-220

ITO-220

Pin Definition:

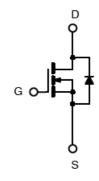
- Gate
 Drain
- 3. Source

PRODUCT SUMMARY

V _{DS} (V)	$R_{DS(on)}(\Omega)$	I _D (A)
800	1.05 @ V _{GS} =10V	9.5

General Description

The TSM10N80 N-Channel enhancement mode Power MOSFET is produced by planar stripe DMOS technology. This advanced technology has been especially tailored to minimize on-state resistance, provide superior switching performance, and withstand high energy pulse in the avalanche and commutation mode. These devices are well suited for high efficiency switch mode power supply, power factor correction, electronic lamp ballast based on half bridge.


Features

- Low R_{DS(ON)} 1.05Ω (Max.)
- Low gate charge typical @ 53nC (Typ.)
- Improve dv/dt capability

Ordering Information

Part No.	Package	Packing		
TSM10N80CZ C0	TO-220	50pcs / Tube		
TSM10N80CI C0	ITO-220	50pc / Tube		

Block Diagram

N-Channel MOSFET

Absolute Maximum Rating (Ta = 25°C unless otherwise noted)

Parameter	Symbol	Limit	Unit
Drain-Source Voltage	V_{DS}	800	V
Gate-Source Voltage	V_{GS}	±30	V
Continuous Drain Current	I _D	9.5	А
Pulsed Drain Current *	I _{DM}	38	А
Peak Diode Recovery dv/dt (Note 3)	dv/dt	4.5	V
Single Pulse Avalanche Energy (Note 2)	E _{AS}	267	mJ
Avalanche Current (Repetitive) (Note 1)	I _{AR}	9.5	А
Repetitive Avalanche Energy (Note 1)	E _{AR}	29	mJ
Operating Junction Temperature	TJ	150	°C
Storage Temperature Range	T _{STG}	-55 to +150	°C

^{*} Limited by maximum junction temperature

Thermal Performance

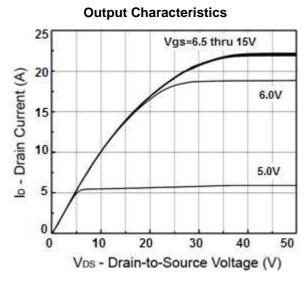
Parameter		Symbol	Limit	Unit
Thermal Resistance - Junction to Case	TO-220	DO.	0.43	°C/W
	ITO-220	Rθ _{JC}	2.6	
Thermal Resistance - Junction to Ambient	TO-220 / ITO-220	$R\Theta_{JA}$	62.5	

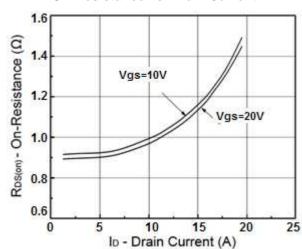
Notes: Surface mounted on FR4 board t ≤ 10sec

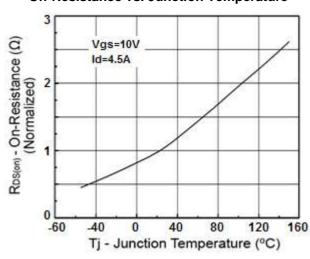
Electrical Specifications (Tc = 25°C unless otherwise noted)

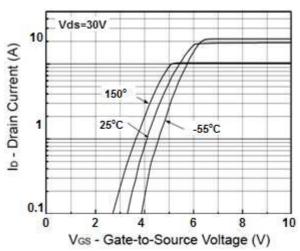
Parameter	Conditions	Symbol	Min	Тур	Max	Unit
Static						
Drain-Source Breakdown Voltage	$V_{GS} = 0V, I_D = 250uA$	BV _{DSS}	800			V
Drain-Source On-State Resistance	$V_{GS} = 10V, I_D = 4.75A$	R _{DS(ON)}		0.9	1.05	Ω
Gate Threshold Voltage	$V_{DS} = V_{GS}, I_{D} = 250uA$	V _{GS(TH)}	2.0		4.0	V
Zero Gate Voltage Drain Current	$V_{DS} = 800V, V_{GS} = 0V$	I _{DSS}			10	uA
Gate Body Leakage	$V_{GS} = \pm 30 V, V_{DS} = 0 V$	I _{GSS}			±100	nA
Forward Transconductance	$V_{DS} = 30V, I_{D} = 4.75A$	g fs		6.3		S
Diode Forward Voltage	$I_S = 9.5A, V_{GS} = 0V$	V_{SD}			1.5	V
Dynamic ^b				_		
Total Gate Charge	V _{DS} = 640V, I _D = 9.5A,	Q_g		53		
Gate-Source Charge		Q_gs		10		nC
Gate-Drain Charge	$V_{GS} = 10V$	Q_gd		23		
Input Capacitance	\/ OF\/ \/ O\/	C _{iss}		2336		
Output Capacitance	$V_{DS} = 25V, V_{GS} = 0V,$	C_{oss}		214		pF
Reverse Transfer Capacitance	f = 1.0MHz	C_{rss}		29		
Switching ^c				_		
Turn-On Delay Time		t _{d(on)}		63		
Turn-On Rise Time	$V_{GS} = 10V, I_D = 9.5A,$ $V_{DD} = 400V, R_G = 25\Omega$	t _r		62		0
Turn-Off Delay Time		$t_{d(off)}$		256		nS
Turn-Off Fall Time		t _f		72		
Reverse Recovery Time	$V_{GS} = 0V, I_S = 9.5A,$	t _{fr}		450		nS
Reverse Recovery Charge	$dI_F/dt = 100A/us$	Q_{fr}		5.3		uC

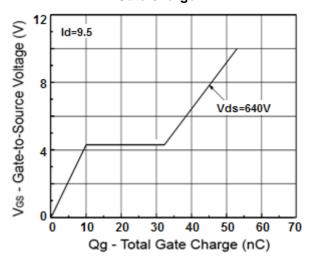
Notes:

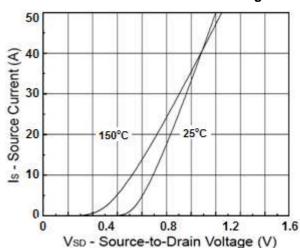

- 1. Repetitive Rating: Pulse Width Limited by Maximum Junction Temperature
- 2. $V_{DD} = 50V$, $I_{AS}=10A$, L=5mH, $R_G=25\Omega$
- 3. $I_{SD} \le 9.5A$, di/dt $\le 200A/uS$, Vdd $\le BV$
- 4. Pulse test: pulse width ≤300uS, duty cycle ≤2%
- 5. b For design reference only, not subject to production testing.
- 6. c Switching time is essentially independent of operating temperature.


800V N-Channel Power MOSFET


Electrical Characteristics Curve (Tc = 25°C, unless otherwise noted)


On-Resistance vs. Drain Current


On-Resistance vs. Junction Temperature


Transfer Characteristics

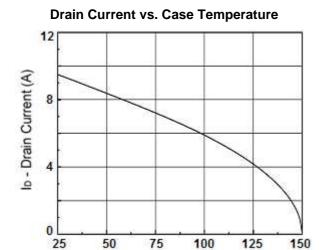
Gate Charge

Source-Drain Diode Forward Voltage

800V N-Channel Power MOSFET

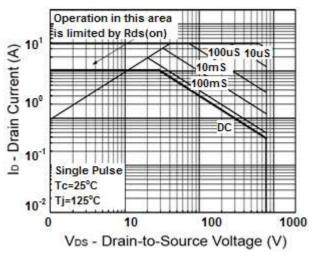
BV_{DSS} vs. Junction Temperature

Vgs=0V


-40

0.8

-60


Electrical Characteristics Curve (Ta = 25°C, unless otherwise noted)

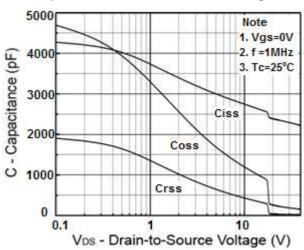
BVpss - Drain-Source Breakdown Voltage (V) (Normalized) Id=250uA

Maximum Safe Operating Area

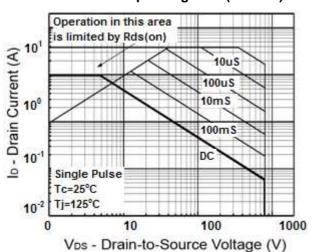
Tc - Case Temperature (°C)

Capacitance vs. Drain-Source Voltage

40


Tj - Junction Temperature (°C)

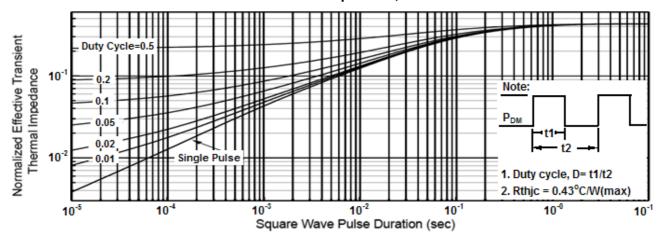
80

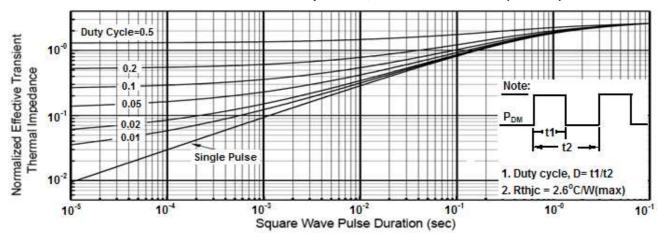

120

160

0

Maximum Safe Operating Area (ITO-220)

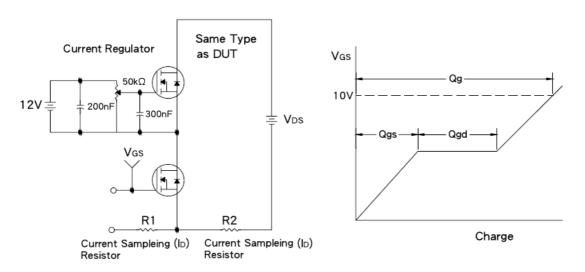


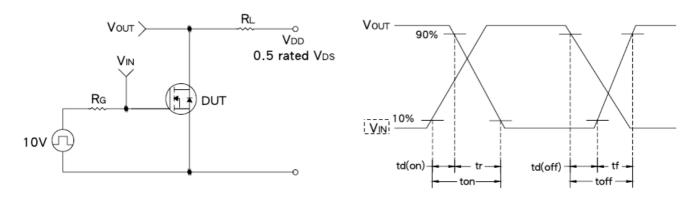


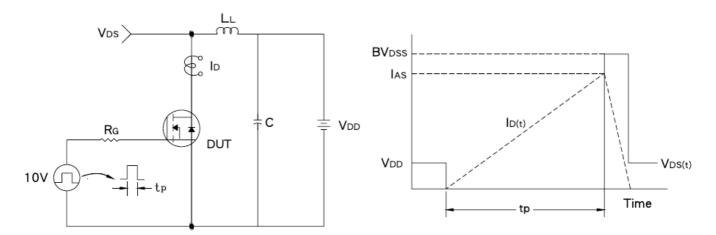
Electrical Characteristics Curve (Ta = 25°C, unless otherwise noted)

Normalized Thermal Transient Impedance, Junction-to-Ambient

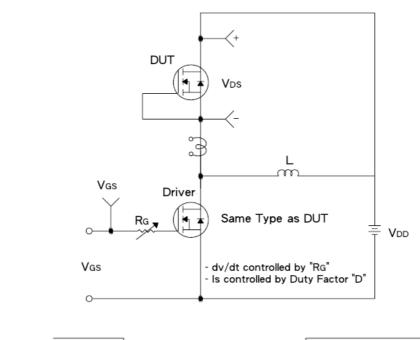
Normalized Thermal Transient Impedance, Junction-to-Ambient(ITO-220)

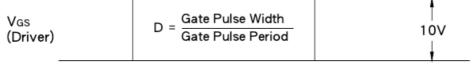


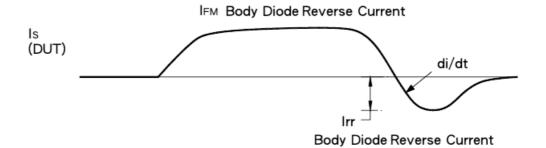

800V N-Channel Power MOSFET

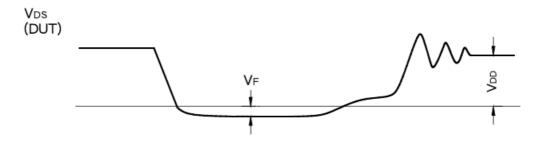

Gate Charge Test Circuit & Waveform

Resistive Switching Test Circuit & Waveform

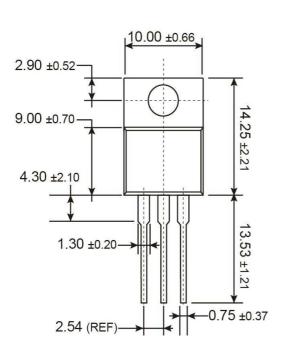

EAS Test Circuit & Waveform

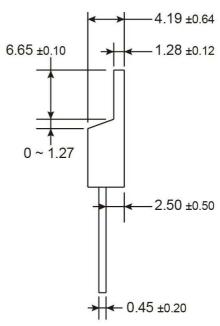



800V N-Channel Power MOSFET

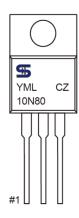


Diode Reverse Recovery Time Test Circuit & Waveform





800V N-Channel Power MOSFET


TO-220 Mechanical Drawing

Unit: Millimeters

Marking Diagram

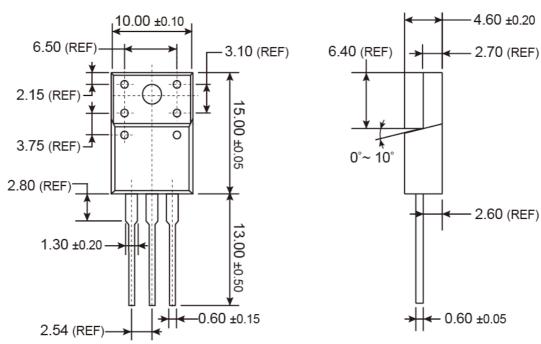
Y = Year Code

M = Month Code

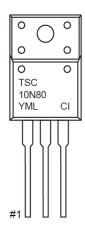
(A=Jan, B=Feb, C=Mar, D=Apl, E=May, F=Jun, G=Jul, H=Aug,

I=Sep, J=Oct, K=Nov, L=Dec)

L = Lot Code



800V N-Channel Power MOSFET



ITO-220 Mechanical Drawing

Unit: Millimeters

Marking Diagram

= Year Code

M = Month Code

(A=Jan, B=Feb, C=Mar, D=Apl, E=May, F=Jun, G=Jul, H=Aug, I=Sep, J=Oct, K=Nov, L=Dec)

L = Lot Code

TSM10N80 800V N-Channel Power MOSFET

Notice

Specifications of the products displayed herein are subject to change without notice. TSC or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Information contained herein is intended to provide a product description only. No license, express or implied, to any intellectual property rights is granted by this document. Except as provided in TSC's terms and conditions of sale for such products, TSC assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of TSC products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify TSC for any damages resulting from such improper use or sale.